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Here we present a methodology for characterizing the structure of patented chemical space. This approach
identifies those chemical replacements that can connect sets of exemplified compounds in individual patents.
Chemists can then search these replacements to help them discover the architecture within their patent
space of interest. To demonstrate the utility of such an approach, we characterize a set of kinase inhibitors
from patents and literature and find that many companies’ patents can be understood to be straightforward
modifications of competitors’ patents. By reapplying these same chemical themes to other related compound
series, novel, biologically active compounds can be discovered.

Introduction

A key asset of any commercial drug discovery program is
the patent protection of its active pharmaceutical ingredients.
Patent protection gives the patent holder the right to exclude
competitors from marketing the same product and time to recoup
the research and development costs of bringing a drug to market.
Companies also file patents for a variety of strategic reasons
including for use as a negotiation tool, to block competitors, to
prevent lawsuits, as a means to improve apparent productivity,
etc.1 Given the value of patent protection, companies try to file
for patent protection early in a program’s life cycle, as soon as
a potential drug activity is identified. This is usually well before
the true safety and efficacy profile of any compound is
understood, and given the difficulty of discovering a safe and
efficacious drug, it is extremely rare that the initially identified
compound will actually be the one brought to market. Thus,
companies will usually try to protect not only one specific
composition of matter but a series of related compounds, or
even several patents of related chemical series, to hedge their
bets that a commercially useful compound will be contained
within that patent space. It is not uncommon to find that the
patent space around a given compound is crowded with several
companies each having filed multiple patents.

However, chemical space is so vast that there are often
“holes” or closely related compounds that possess the same
biological activity but are still available to be patented. And it
can be extremely profitable to identify these holes in another’s
patent coverage, for example, identifying vardenafil (compound
2, the active pharmaceutical ingredient in Bayer’s Levitra) given
Pfizer’s sildenafil (compound1, Viagra) patent space (Figure
1). Me-too and “fast follower” drugs such as Levitra utilize
lessons from their predecessors about how to effect a biological
response, and fold in their own understanding about holes in
the patent space to rapidly create value and improved drug
properties.2 Understanding how to exploit holes in patent space
is also important when screening hits are evaluated. Each
screening hit entering follow-up requires that a defendable
intellectual property position be identified. For a naı¨ve chemistry
team following up on a screening hit in a crowded patent space,
this is a challenging task.

Several tools exist to help search patented chemical space,
and there are many ways to characterize the patent space around

a given compound. There is extensive work based on text mining
approaches that help categorize and search patents, like DOL-
PHIN3 and DerwentAnalytics.4 Obviously, compound structural
searches are also a core part of examining patents. These include
searching by substructure, by Markush structure, or by
similarity.5-7 The structure space around a compound is often
visualized by similarity and clustering approaches to characterize
how crowded that space actually is. There are, of course,
multiple definitions of similarity8 and many clustering methods
available to organize compounds into sensible groups, and a
range of tools exist to organize and browse such collections.
One such method based on simple definitions of scaffolds has
been found to be useful in organizing and browsing a large
number of compounds and creating new molecules that are
synthesizable.9,10 A parallel approach is to project compounds
onto 2D space with the idea that such projections maintain the
“true” distance between molecules typically calculated in very
high dimensional space. Statistical techniques such as linear and
nonlinear multidimensional scaling (MDS) and Sammon maps
have also been used.11 Here the idea is that such 2D projections
will point out “holes” in patent space which chemists can fill.
One way to utilize such a tool is to take an idea for a new
molecule, project it onto this 2D space and if distances are
preserved it can give the chemist a clue toward whether she is
moving in directions that overlap with other patented mol-
ecules.12

However, translating this information into knowledge about
an available chemical space remains an art. In part, this is
because it requires a patent agent to parse the often obfuscated
text of a patent, interpret its coverage, and assess obviousness.6

But the other problem is that these structure-based search tools
and manipulations that follow do not try to characterize how
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Figure 1. Chemical structures of sildenafil (1) and vardenafil (2),
closely related but different enough to warrant coverage by separate
patents.
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patents are related to one another. These tools are very useful
for addressing the legal status of a given compound (the
compound is/is not covered) but are less useful for vetting a
chemical theme, or how a compound series relates to others in
the literature. They can identify when patents appear to be
closely related (by similarity) but leave it to the chemist to
identify the chemical story that separates them. For example,
there are often constraints imposed by a synthetic route or the
availability of key reagents that narrow the set of claimed
compounds. If one can identify such limitations and ways to
avoid them, then they can generate unique, patentable com-
pounds. Another related strategy that also appears frequently
in the patent (and other) literature is use of isosterism, taking
each of the compounds in a series and substituting part of their
structure with an isosteric group, and then patenting this novel
series. Of course, to protect against this, most patent applications
will try to cover the most obvious isosteres within a series.
Nonetheless, these patterns of regular substitutions into a
chemical series do appear often (as with1 and 2 above) and
provide an interesting type of signal to train a computer to
identify. Together, these chemical stories provide a useful way
of understanding how patent space is organized.

Here we present a method for characterizing the structure of
patent space by identifying recurring chemical stories across
patents and companies, organizing a database of compounds
by cataloging the chemical replacements that relate pairs of
molecules. In particular, we want to discover those cases where,
for instance, patent A has 20 compounds that differ from patent
B’s 20 compounds by substitution of a nitrogen into the scaffold
in a regular way, for example, pyrimidine to a triazine. It is not
enough to identify that one compound from patent B is similar
to a compound from patent A and should be plotted next to it
on a graph; rather, we want to characterize the patent strategies
that differentiatethe two patents by identifying the recurring
chemical stories that connect the two patents. Presenting these
types of stories to the chemist helps them to understand and
explore patent space, and ultimately can help them devise a
way to avoid covered regions of chemical space.

Methods

As mentioned above, clustering-based procedures provide the
most obvious route to grouping compounds. Some clustering
methods such as hierarchical clustering also show the relationships
between clusters. Molecules in this space do not necessarily have
distance relationships maintained; however, cluster distances are

knowable. On the other hand, every pair of molecules (lines
connecting two molecules) in the 2D MDS-type projections
maintain their distance relationships. This type of representation
also gives you a visual handle on “holes” in this 2D space that can
be filled with appropriately selected molecules added to the
database.13 In the present approach, we organize a database of
compounds by cataloging the chemical replacements that relate pairs
of molecules. In this representation, the lines connecting molecules
(edges) represent a transformation (no implicit directionality is
present) that can be applied to one molecule to produce the other.
As is obvious from Figure 2, it is difficult to denote all computed
edges on such graphs and retain clarity, and we do not produce
such graphs here. We note, however, that various navigation aids
such as visually organizing the transformations, using color to group
lines that are the same transformation, and other graph layout
algorithms could be used to generate more useful, interactive
representations for the chemist.

Overview of Method. The results presented in this work are
for a set of kinase inhibitors obtained from patents and journal
articles. A pairwise Tanimoto similarity is calculated for all
molecules based on topological torsions.14 This Tanimoto similarity
is used to prioritize maximum common substructure (MCS)
calculations, which are performed on a compute farm. The details
of our implementation of the MCS algorithm are similar to other
published algorithms,15,16 apart from some heuristic differences,
which will be published elsewhere.17 After maximum common
substructures are identified, a canonical chemical replacement is
calculated, and a database is populated with these data. Chemical
replacements can then be retrieved by querying with a replacement
or piece of a replacement, a compound structure or substructure,
by patent, or by company name.

Patented Kinase Inhibitors. The kinase patent literature is
notoriously complicated and provides an ideal test for the kind of
tool presented here. A set of patent and literature kinase inhibitors,
assay values, and references was purchased from GVK Bio-
sciences.18 The set contains 116 550 unique structures of compounds
exemplified in patents and also from primary literature. Each
structure was mapped to a single company and patent by identifying
the earliest publication of a compound and the company connected
with that publication. Obviously, this was not always accurate as
the patent coverage was incomplete, and the company affiliation
of applicants was not always obvious. Approximately 90% of
compounds were assigned to a patent in this way. This automatic
assignment of a compound to a patent was checked for accuracy
by comparing individual assignments with other sources, such as
Prous’ Integrity database,19 and by direct mining of the patent
literature. In addition, a lookup table was generated to translate
original assignees to a probable current assignee to reflect current

Figure 2. Pictorial representation that compares the current approach to previous methods. Compounds are represented as dots in two dimensions;
their location is determined by projecting compounds in similarity space onto a two-dimensional area: (b) compounds from patent 1; (O) compounds
from patent 2. (A) Similar compounds are clustered together (enclosed in black circles). Notice that a mix of compounds from patents 1 and 2 fill
both clusters; the patents appear to be on top of one another. (B) ‘Holes’ in patent space (shaded oval) are detected by demarcating regions of
similarity space devoid of any compounds. Whether any truly patentable, synthetically accessible, and biologically active compounds exist within
this space is not known. (C) Present approach. Related compounds are mapped between patents. Three examples of one chemical replacement
(solid arrows) and one other replacement (dashed arrow) are observed. The solid arrow replacement is the most important theme in that it maps all
of the compounds in one patent series to compounds in the other series. In other words, unlike in panel A, the solid arrow is what relates the two
patents to one another.
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patent rights. This table essentially contains a list of recent
pharmaceutical company mergers, as well as several collaborations.

Maximum Common Substructure. Several recent articles have
published algorithms for calculating MCS and heuristics for
speeding up such a calculation. We have implemented one such
algorithm here.17 The implementation can calculate both the largest
connected and disconnected isomorphisms between graphs. The
former is much faster than the latter and is useful for identifying
chemical replacements at the exterior of a molecule, whereas the
latter is needed to identify small changes to the core of a molecule
(in the worst-case scenario, the largest connected isomorphism
would be only half of the molecule, even though only a single atom
might be different between the two molecules; for example, see
Figure 3). MCS has been used in the literature for multiple purposes,
including as a similarity metric15 and for pharmacophore perception
type problems,20 and Sheridan21 has recently used it to catalog a
set of common replacements found in the MDDR22 (MDL Drug
Data Report) database.

Even with recent improvements in the speed of these algorithms,
such a calculation can still be quite slow, especially for certain
pathological cases. To avoid these pathological cases, we abort a
calculation after 30 s of calculation time. The vast majority of
calculations took far less than this; in fact, only about 8400 out of
roughly 5 million comparisons were aborted in this way. Of course,
it is still not possible to calculate the maximum common substruc-
ture for all pairs of molecules from a set of 100 000 (5 billion
comparisons). But because we are generally uninterested in large
(nearly as large as the molecule) chemical replacements we can
avoid doing the calculation at all on very dissimilar molecules. In
practice, we find that using a 0.5 similarity in topological torsions
identifies 90% of the molecule pairs with identifiable chemical
replacements. In addition, only comparisons between molecules
from different companies were performed. Discovering replace-
ments within a company’s patented series is interesting, but we do
not focus on this problem here. These assumptions reduced the
computational load to 5 million comparisons, which took 2 weeks
on a 30, 2.4 GHz AMD Opteron processor compute farm to
complete.

Chemical Replacement Perception.In his paper on common
chemical replacements from the MDDR database, Sheridan21

outlined a method for discovering recurring medicinal chemistry
themes within a chemical database. For pairs of molecules in the
database, he calculates the maximum common substructure between
them, and he defines the remaining differences in structure as
chemical replacements. By going through the MDDR database in
this pairwise manner, he observed that certain transforms appeared
repeatedly. For example, he found 188 pairs of molecules in the
MDDR whose only difference was between a thiophene and a furan
ring. The final histogram of all transforms observed in the MDDR
reflected many basic medicinal chemistry strategies such as
heteroatom substitution into an aromatic ring and identified many
well-known bioisosteric groups. Although it is computationally
expensive to calculate such a large number of maximum common
substructures between molecules, in the end this approach was very
successful at identifying common medicinal chemistry strategies
and themes and was quite a coup for a computer program. Here,
we apply a similar methodology to store, query, and organize a
subset of the kinase patent space. There are two chief differences
between that effort and the present one. First, instead of focusing
on bioisosterism and counting the gross number of times that a
chemical transform appears in any context, we focus on patent space
and finding those transforms that can connect compound series
between two patents or generally between two companies. Second
and more costly, we need to calculate many more maximum
common substructures. In the Sheridan work, comparisons were
calculated between molecules only if they had the same activity
label. Here we utilize the entire set of literature and patented kinase
inhibitors, and in addition, we use a lower similarity threshold to
discover more subtle relationships between compounds.

A chemical replacement was calculated from the maximum
common substructure between two compounds. Backtracking was
done to include whole rings and other groups as per the algorithm
specified in Sheridan.21 Chemical replacements were only calculated
if the common substructure was at least as large as half of both
molecules. See Figure 3 for an example of a chemical replacement.
Once a replacement is identified, its representation is canonicalized
into the SMILES notation by use of ChemAxon’s JChem package,23

and these canonical smiles are used as the unique key into the
database.

Results and Discussion

For the set of 116 550 kinase compounds, roughly 5 million
MCSs were calculated. From these calculations, 820 000 chemi-
cal replacements were identified that relate 40 000 compounds.
However, no replacements were identified for nearly 80 000 of
the compounds in this set. Apart from concerns about whether
this kinase compound set comprehensively covers the patent
and primary literature, this is most likely due to the case where

Figure 3. (A) Example of a chemical replacement. In the example, a
nitrogen has been inserted into the scaffold of the other series. The
starred atoms reflect connections back to isomeric scaffold atoms. (B)
This replacement connects these 12 molecules from the chemical series
of two patents, Sugen’s (now Pfizer’s) U.S. 6225335 B (compounds
on left) and Bristol-Myers Squibb’s WO 03/27102 A1 (compounds on
right). It would appear that Bristol-Myers Squibb’s patented compounds
were influenced or are related to Sugen’s published series.
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no other company has attempted a fast-follower strategy for
these series. Because replacements were not calculated for
compounds from the same company, and these series are not
related to other companies’ series, our algorithm fails to identify
any replacements for these molecules. On the other hand, for
compounds where a replacement was identified, that compound
was also connected to 40 other compounds, on average. Thus,
where a fast-follower strategy might be employed, we obtained
a richly nested set of replacements connecting these molecules.

Figure 4 nicely illustrates this latter case, where several
competitors may be found close by in patent space. Given a
starting compound (gefitinib, compound3), we ask, what related
patents are adjacent to this compound? A simple answer to this
question might be found by generating a list of similar
compounds. Here, we frame the answer by looking for series
of chemicals that are related by chemical replacements, which
hopefully will provide better insights into how patents are
organized and are related to one another. Practically, the
maximum common substructure approach is successful at
identifying these motifs because medicinal chemistry is a
component-based methodology for exploring chemical space.
Stepwise reactions and preferred coupling points naturally lead
to delineated units of structure, otherwise known as scaffolds,
that are invariant across a series and are easily identified by
chemists and this algorithm alike. Similarity approaches, in
contrast, rob the analysis of any structural context by translating
their results into a numerical representation. Similarity has been
found to be useful in organizing molecules. Here we argue for
a parallel approach where a database of compounds is stored
along with the relationships between molecules. We can then
track how often a replacement occurs in the database and support
querying of replacements by structure.

Interestingly, of the 820 000 replacements identified, less than
70 000 replacements were found more than once. This means
that even for a highly nested set of connections between related
compound series, there are a much small number of replace-
ments that represent the major themes connecting these series.
This can be seen in Figure 4, with the arrow widths representing
the occurrence of the different replacements. While there are
replacements connecting3 to many compounds, the replace-
ments connecting it to8 and 4 emerge as the major theme
connecting AstraZeneca’s compounds to related series from
Wyeth and Johnson & Johnson. Cataloging how often certain
replacements occur helps resolve patent strategies from more
random associations between compounds. If two patents’
compound series are related, then by luck, it will often be
possible to construct some type of contorted replacement to turn
a compound of one series into any of the compounds in the
other series. However, it is much more powerful to identify the
single replacement that pairs off all of the compounds in the
two series.

If we compare our results with those of Sheridan and his
work with the MDDR, we see that there is an important
difference in the types of chemical replacements identified. The
most common chemical replacement he identified was changing
a single chlorine to a methyl in a molecule. For our purposes,
these are the most uninteresting replacements. In contrast,
consider the most common replacement found in Figure 5. By
focusing on comparisons between molecules of different
companies and patents, we obtain only those replacements
worthy of having a new patent filed. In general, this means that
we identify core changes to a molecule instead of peripheral
ones, and the resulting replacements are nonobvious, much more

Figure 4. Example of some of the compounds related to gefitinib (AstraZeneca’s Iressa, compound3) by frequent chemical replacements. Arrow
edge widths are proportional to the number of replacement examples connecting compounds in AstraZeneca’s patent for gefitinib to other companies’
patents. Compounds were cited as follows:3, AstraZeneca WO 96/33980 A1;4, Johnson & Johnson U.S. 2004/0082639 A1;5, Boehringer Ingelheim
WO 03/082290 A1;6, Pfizer US 5981569 A;7, Mitsubishi WO 02/066445 A1;8, Wyeth U.S. 6002008 A;9, Sugen (now Pfizer)Bioorg. Med.
Chem.1996, 4, 1203.
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Figure 5. Survey of the most frequent replacements between companies. Replacements are ranked by the total number of examples that connected
the two companies. The chemical replacement, a typical compound from the first company, a typical compound from the second company, and the
company names are given. The starred atoms reflect connections back to isomeric scaffold atoms. The most common replacement observed (first
row) connects 70 molecules from AstraZeneca (left) and Wyeth (right) including chemical series across several patents (AstraZeneca’s U.S. 5457105
A and U.S. 5580870 A and Wyeth’s U.S. 6002008 A and WO 00/18761 A1). This replacement appears to be a key strategy used by Wyeth (right)
to differentiate itself from AstraZeneca (left) and the well-known quinazoline series.

Kinase Patent Space Journal of Medicinal Chemistry, 2006, Vol. 49, No. 62107



inspiring to the medicinal chemist, and likely to be more relevant
for a patent agent.

As one surveys the results closely, it becomes apparent that
some replacements are conservative and would not be expected
to affect biological activity in a profound way, while other
replacements are quite profound and it is not obvious that
biological activity would be retained. Yet, it is still an interesting
exercise to at least consider the possibility that some of these
profound replacements conserve biological activity, that is, that
both series bind kinases in the same way. For instance, consider
whether3 could bind in a similar mode to a kinase as4. The
insertion of an extra ring into the quinazoline scaffold is not a
conservative change, but for this particular example we know
that activity of this series against several kinases and cell lines
is retained, though the spectrum of activity may have changed.24,25

Alternatively, consider whether the second set (row) of com-
pounds in Figure 5 both bind in the same way. Both series
exhibit activity against multiple kinases.26,27 And even if there
is no biological activity relationship between the chemical series,
the fact remains that these related chemical spaces are covered
by patents and need to be considered in the development of a
patenting strategy.

The replacements identified here can also be employed to
construct novel, biologically active compounds. Consider the
compound series recently identified by a group at AstraZeneca
that is potent but selective for c-Src kinase, compound10.28

The quinazoline scaffold on which this compound is based is
known to bind many different kinases. However, utilizing certain
5-substituted quinazolines seems to convey c-Src selectivity.
In Figure 6, we then apply replacements that we have observed
with other quinazolines, such as the first replacement of Figure
5, to construct a novel compound,11, which potentially has
the same biological activity as the parent compound,10. Of
course, simply applying a replacement does not guarantee
noveltysthis question can only be addressed by the expert patent
agentsand additional modeling may be necessary before
deciding whether to proceed with synthesis, but it does provide
a very useful starting point for ideas.

The present approach does suffer from several limitations.
First, patent coverage is not complete. The tool provides a useful
exploration and hypothesis generation functionality but cannot
be the ultimate arbitrator of patent strategy. This role remains
reserved for the expert patent agent. Moreover, if every patent
was covered, and in addition, not only exemplified compounds
but all potential compounds were included in our compound
set, then the number of compound comparisons required to
perform such an analysis would probably be prohibitive. Of
course, there are probably clever algorithmic improvements one
could make to prioritize the most useful calculations, so it is
probably more accurate to say that it would be difficult. One
could focus exclusively on scaffold replacements, perhaps first
clustering by scaffold and then comparing the scaffolds them-
selves. Also, we do not predict whether the biological activity
of related series is the same. If the task was to predict whether
a chemical series did have a similar biological activity as

another, one could use other data and modeling approaches to
hone in on more probable candidates, such as utilizing actual
activity data from literature and patents or building structural
models of activity.

In general, because these replacements have been observed
in real molecules, they could be a useful basis set for de novo
chemistry tools (better ensuring synthetic accessibility). Orga-
nizing a database of compounds from the perspective of
replacements can potentially be profitably applied to other
problems in chemistry, such as detecting toxicophores (chemical
replacements that confer a toxic liability to a molecule) or
characterizing SAR development (how related chemical series’
activities are; see also ref 29). Indeed, clustering by chemical
replacement seems to be a powerful algorithm for identifying
chemical themes.

Conclusions

A methodology is presented for characterizing the structure
of patented chemical space. We identify chemical replacements
by calculating the maximum common substructure between
similar pairs of molecules from different patents. We propose
and exemplify how a catalogue of replacements that occur in
the database is a useful way to summarize the structural
information in the database. This strategy helps with the
discovery of chemical themes others have used to design patents
within a space of interest. To demonstrate the utility of such an
approach, we have characterized a set of kinase inhibitors from
patents and literature and find that many companies’ patents
can be understood to be straightforward modifications of
competitors’ patents. In the future, we hope that this approach
might be extended to identify chemical themes in other contexts.

We have shown that encoding patent space in terms of patent
strategies is useful as it ameliorates the problem of having to
enumerate all the compounds that are covered by a patent (as
enumerated in specific claims), and those that are potentially
problematic (as covered in generic claims). One specific example
of this is the following. Because we store patent strategies
instead of enumerating specific points in chemical space, we
avoid the problem of every follow-up question about a specific
compound having to be passed back to the expert patent agent
for clarification. We continue to work on other useful visual
representations of these transforms.
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